

Theme: Physics

Abstract No:. PTCOG-AO2025-ABS-0173

Planning Strategies for Real-time Gated Proton Therapy in Prostate Cancer Zubin Master MSc, Clifford Chua GA BSc, Calvin Koh WY PhD, Kah Seng Lew BSc, Sharon Poh MD, Hong Qi Tan PhD, Andrew Wibawa MSc, Masashi Yagi PhD, Sung Yong Park PhD National Cancer Centre Singapore, Division of Radiation Oncology

Objectives

Real-Time Gated Proton Therapy (RGPT) uses continuous X-ray tracking of implanted fiducials to manage intrafraction motion. This study compares planning strategies to identify which best maintains target coverage and organ-at-risk (OAR) sparing during inter-beam isocenter shifts common in RGPT workflows.

Methods

A representative prostate case with fiducials was replanned using four robust IMPT strategies: Multifield Optimization (MFO), Single Field Optimization (SFO), Hybrid (SFO for prostate, MFO for seminal vesicles), and MFO with inter-beam robustness (*Interbeam*). To simulate RGPT, inter-beam prostate motion was modeled with shifts of 3, 6 and 9mm. Dose distributions were evaluated for target coverage (D98%) and OAR doses/hotspots (D1% for rectum and bladder) under nominal and shifted conditions.

Results

The SFO and *Inter-beam* plans showed the highest robustness. Both techniques tolerated inter-beam shifts up to 6mm only, with target coverage and OAR parameter variations remaining < $\pm 1\%$ across all tested scenarios, and with minor deviations seen at 9 mm. The Hybrid and MFO plans degraded earlier; Hybrid at 6 mm and MFO from 3 mm onward, showing loss of target coverage in the D₉₈% region (up to -12%) and increased D₁% hotspot doses (up to +8%) for targets and OARs, for 6mm shifts.

Conclusions

Inter-beam positional shifts in RGPT can degrade dose coverage in MFO plans lacking inter-beam robustness. SFO and Inter-beam robustness strategies preserved target and OAR dosimetry under RGPT-like inter-beam shifts and are recommended for workflows involving per-field isocenter adjustments, especially in hypo-fractionated or SBRT treatments with limited dose averaging opportunities over the treatment course.

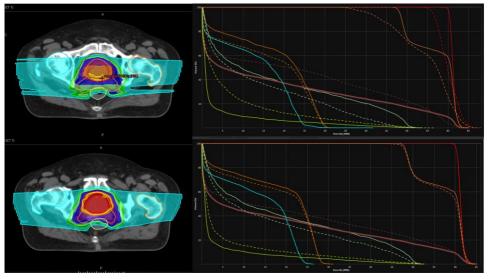


Fig.1. An example of a dose perturbation in an MFO plan (top row) and an SFO plan (bottom row) due to a 6mm inter-beam shift in the superior direction.